
UTNotifications Manual

Version 1.8

Introduction

Getting Started

Creating Local Notifications

Using Notification Profiles (Sounds, Icons and Other Attributes)

Custom User Data and Handling Received / Clicked Notifications

Notification Buttons (Android)

Image Notifications (Android)

Open URL Notifications (Android)

Push Notifications Overview

What You Need for Push Notifications
General
iOS: Apple Push Notification Service (APNS)
Android: Firebase Cloud Messaging (FCM)
Android: Amazon Device Messaging (ADM)
Windows Store: Windows Push Notification Services (WNS)

Push Notifications Payload Format
FCM Topics

Handling Push Registration Failures

Configuring Apple Push Notification Service (APNS)

Configuring the Firebase Cloud Messaging (FCM)
Apply Credentials and Test

Configuring the Amazon Device Messaging (ADM)
Getting Your OAuth Credentials and API Key
Apply Credentials and Test

Configuring the Windows Push Notification Services (WNS)
Register your app with the Dashboard
Obtain the identity values for your app
Apply Credentials and Test

Contacts

Introduction

API Reference​ | ​Forum​ | ​Support Email​ | ​Issue Tracking

UTNotifications is a professional Unity extension that is yet very convenient and easy to use. It provides
a single cross-platform API for posting and handling local, scheduled (including those appearing once
and those repeating) and push notifications. It fully supports iOS (7.0 and newer), Android (4.1 and
newer, Google Play featured and Amazon Kindle Android devices) and Windows Store/Universal
Windows Platform (Windows Phone 8.1, Windows 8.1/10, Universal 8.1, Universal 10).

Features:

- Immediate and scheduled (those appearing once and those repeating) local notifications with
automated restoring on device reboot.

- Push notifications.
- 2 Android push notifications services: Firebase Cloud Messaging (FCM) & Amazon Device

Messaging (ADM) in a single build.
- Completely cross-platform API.
- The full source code is provided as well as the code of the native plugins so one can change and

adjust anything one likes.
- A demo push notifications provider web server with the source code is included.
- A sample & test scene.
- A detailed manual and an API Reference docs are included.
- Default or custom notifications sounds and icons.
- Convenient Unity editor extension for configuring.
- Notifications enabling/disabling API for all supported platforms allows one to add notifications

toggle to the game options.
- API for handling clicked & received notifications of any type both local and push.
- One can attach custom data to the notification of any type and access it while handling the

received notification.
- Hiding or cancelling a specific notification or all of them.
- Application icon badge number management API for iOS and Android.
- Android: Image notifications.
- Android: Complete integration with Android 8+ Notification Channels.
- Android: Custom buttons.
- Android: High Priority/Heads-Up notifications support.
- And more!

UTNotifications consists of two main parts: Unity client extension and a demo server that demonstrates a
way to send push (remote) notifications to each of the supported platforms. For the production version of
your application your own game server or a dedicated notifications server is required, but you can use
the provided demo server source code as you like. There is also a number of third-party solutions for the
push notification servers, which are compatible with UTNotifications as it uses plain iOS, Google
Android, Amazon Android & Windows push notifications services. You can also leverage the asset for
local/scheduled notifications only - in that case you don’t need any backend. The asset works well with
Unity 2017 or newer.

https://universal-tools.github.io/UTNotifications
http://forum.unity3d.com/threads/released-utnotifications-professional-cross-platform-push-notifications-and-more.333045/
mailto:universal.tools.contact@gmail.com
https://github.com/universal-tools/UTNotificationsFeedback/issues

Getting Started

Once you installed the asset into your project, you’re able to open its settings from Unity menu: ​Edit ->
Project Settings -> UTNotifications​.

Please ​note​, that moving any of the asset files or folders is not recommended, as it includes a number of
editor scripts which rely on the existing directories structure. In case you decide to move anything,
please update ​Assets/UTNotifications/Src/Settings.cs​ accordingly.

Local notifications don’t require any additional setup, though a number of configuration options is
available for them. Configuring push notifications services is ​described below​.
There is an example scene: ​Assets/UTNotifications/Sample/UTNotificationsSample.unity​ which
can be used to get familiar with many of the UTNotifications features and how to work with them. It also
helps you checking the asset configuration.

Please ​note​ that notifications are not available in the Unity editor and some device emulators, so please
deploy to a device in order test or debug notifications related functionality.
You can find the API Reference in UTNotifications Unity Settings and ​here​.

Creating Local Notifications

Local notifications are notifications shown by a request of the client application itself. With
UTNotifications you can create immediate, scheduled and repeated scheduled local notifications.

https://universal-tools.github.io/UTNotifications

The entire UTNotifications API is stored in ​namespace​ ​UTNotifications​. So you might like adding a
using statement to access the contents of that namespace easily:
 ​using​ UTNotifications;

Now let’s Initialize ​UTNotifications.Manager​. It must be done prior to accessing any UTNotifications
methods. ​Awake()​ or ​Start()​ method of some MonoBehaviour is a good place for it:

 ​public​ ​void​ Start()
 {

 UTNotifications.​Manager​.Instance.Initialize(​false​);
 }

UTNotifications.​Manager​.Instance ​(or just ​Manager​.Instance ​if you added ​using​ UTNotifications​) is
the main access point to all the methods of UTNotifications. It returns a ​singletone​ instance of the
UTNotifications.​Manager​ class. We specified ​false​ in the example above as the value of argument
willHandleReceivedNotifications​ of ​UTNotifications.​Manager​.Initialize​ as we don’t have any
intention to handle shown notifications at the moment. For more info on handling notifications, please
refer to the ​appropriate section​ of the manual.

It’s recommended that you also check the returned value of
UTNotifications.​Manager​.Instance.Initialize​ call, as returning ​false​ signals about a failure with
the notification system initialization, which makes it impossible to use any of the asset functionality
(check the application logs to find more details on the issue). It’s always easy to check whether the
Manager is in the successfully initialized state by acessing the boolean property
UTNotifications.​Manager​.Instance.​Initialized.

As soon as the Manager has been initialized, you can start creating local notifications. F.e.:

UTNotifications.​Manager​.Instance.PostLocalNotification(​"Title"​, ​"Text"​, 1);
It creates an immediate local notification with title = “Title”, text = “Text” and id = 1. Notification ids are
used to identify each notification. A new notification with the same id as an old one replaces that old
notification instead of creating a second separate notification. id is also used to hide or cancel a specific
notification (see the ​API Reference​ for the details).
Note​ that with the default settings you will not be able to see or hear any immediate notifications on any
of the supported platforms, because notifications are not shown while the application is running by
default. You can modify this behaviour in UTNotifications Settings: ​Android​ -> ​Show Notifications​ and
Windows Store​ -> ​Notify only when app is closed or hidden​. Unfortunately, iOS doesn’t allow
controlling it: you can never see any notifications while the app is running on iOS.

Let’s now try to schedule a local notification:

UTNotifications.​Manager​.Instance.ScheduleNotification(​15​, ​"Title"​, ​"Text"​, 2);
A local notification with title = “Title”, text = “Text” and id = 2 wll be triggered in 15 seconds after that
code is executed. You can also specify a ​System.​DateTime​ value as the first argument as a date and
time to trigger the notification.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/namespace
https://en.wikipedia.org/wiki/Singleton_pattern
https://universal-tools.github.io/UTNotifications

Similarly you can create a repeated scheduled notification:
UTNotifications.​Manager​.Instance.ScheduleNotificationRepeating(​5​, ​25​, ​"Title"​,
"Text"​, 3);

This notification ​with title = “Title”, text = “Text” and id = 3 will be shown first time in 5 seconds after that
code is executed and then will be repeated every 25 seconds. There is also a ​System.​DateTime​ version
of this method.
Note​ that the repeating times are approximate and may differ, especially on iOS where only fixed options
like every minute, every day, every week and so on are available. So the provided interval value will be
approximated by one of the available options.

On Android there is a way to show a notification containing an image:

Manager​.Instance.ScheduleNotification(​10​, ​"Image Notification"​,
 ​"Image notification text"​, ​4​, ​new​ ​Dictionary​<​string​, ​string​>
{

 {

 ​"image_url"​,
 ​"https://thecatapi.com/api/images/get?format=src&type=png&size=med"
 ​}
});

For more details on image notifications see ​Image Notifications (Android)​. See also ​Open URL
Notifications (Android)​ and ​Notification Buttons (Android)​ for more information on some more options.

You can also configure notifications icons, sounds and other notifications attributes. For more details see
Using Notification Profiles (Sounds, Icons and Other Attributes)​.

Using Notification Profiles (Sounds, Icons and Other Attributes)

By default any notification will be posted with a default system notification sound and the application
icon. UTNotifications allows definining custom sounds and icons for notifications (custom notification
icons are not supported by iOS, no customization is currently supported on Windows Store). What sound
and icon is to be used for a specific notification is defined by a ​notification profile​ - a named set of the
notification options. Notification profiles also define ​Android 8+ Notification Channels​ - named
user-configurable groups of notifications. It’s important to configure at least default profile for Android.

For example, a game might have two kinds of notifications - when a player receives a gift and when
some in-game research is complete. One can define two notification profiles: ​“gift” ​ &
“research_complete” ​. The first one will use a gift box icon when shown and some specific sound,
while the other will have a bulb icon and another sound.
You can create and edit notification profiles in UTNotifications editor: ​Edit -> Project Settings ->
UTNotifications -> Notification Profiles (sounds, icons and more)​.
Each of functions ​UTNotifications.Manager.Instance.PostLocalNotification​,
UTNotifications.Manager.Instance.ScheduleNotification​ and
UTNotifications.Manager.Instance.ScheduleNotificationRepeating​ has an optional argument
string​ notificationProfile​ which defines a name of a notification profile used for this notification. Also, all
implementations of ​UTNotifications.​Notification​ can optionally have a value of ​notificationProfile​.

You can also specify a notification profile for push notifications.

https://developer.android.com/reference/android/app/NotificationChannel.html

- iOS (APNS)​.
Notification profile name is specified as a sound in the APNS json payload:
{

 "aps":

 {

 <...>

 "sound" : "​Data/Raw/​<NOTIFICATION PROFILE NAME>​"
 }

}

Note​ that ​<NOTIFICATION PROFILE NAME>​ should not contain any file extension.

- Android​.
Notification profile name is stored in node ​“data”​ of the notification json.
FCM​:
{

 "registration_ids":<...>,

 "data":

 {

 <...>,

 "notification_profile":​"<NOTIFICATION PROFILE NAME>"
 }

}

ADM:
{

 "data":

 {

 <...>,

 "notification_profile":​"<NOTIFICATION PROFILE NAME>"
 }

}

- Windows Store (WNS):
Notification profile name is stored in the payload json root node:
{

 <...>,

 "notification_profile":​"<NOTIFICATION PROFILE NAME>"
}

Push notifications sent from the UTNotificationsSample (​Notify all registered devices​) use
notification profile ​“demo_notification_profile”​. You can try configuring a profile with that name to
see how the feature works.

There is a predefined profile ​“default”​, which is used on Android when no notification profile is
specified for a notification. It’s ​important​ to configure at least its Small Icon (Android 5.0+): Android,
starting with version 5.0, ignores any color information of small notification icons: the icons are
considered to be completely white and only alpha channel of the icons is applied (so icons can be only
white & transparent). So any non-transparent icons turn into just white squares when using as small
notification icons.

Custom User Data and Handling Received / Clicked Notifications

UTNotifications provides a way to handle a list of all notifications shown before or when an app was
running, and also a notification which was clicked by a user. Besides, each notification (local and push)
can contain some custom data which can be read when handling a clicked or received notification.

In order to do so, please subscribe to ​UTNotifications.​Manager​ ​events ​OnNotificationClicked​ ​/
OnNotificationsReceived​ ​before​ initializing UTNotifications. F.e.:

 UTNotifications.​Manager​ notificationsManager = UTNotifications.​Manager​.Instance;

 notificationsManager.OnNotificationClicked += (notification) =>

 {

 ​Debug​.Log(notification.text + ​" clicked"​);
 };

 notificationsManager.OnNotificationsReceived += (receivedNotifications) =>

 {

 ​foreach​ (​var​ notification ​in​ receivedNotifications)
 {

 ​Debug​.Log(notification.text + ​" received/triggered"​);
 }

 };

 notificationsManager.Initialize(​true​);

Here we specified ​true​ as the value of argument ​willHandleReceivedNotifications​ of
UTNotifications.​Manager​.Initialize​, as we’d like to handle received notifications with
OnNotificationsReceived​. Please never set it to ​true​ if you don’t intend to handle received notifications
as it can affect the app performance and memory consumtion: the received notifications will be stored
and never cleaned up then. Handling only clicked notifications doesn’t require turning on
willHandleReceivedNotifications​.
Note​ that iOS doesn't provide the list of all notifications shown when the app wasn't running in
foreground. Received notifications list will contain only the notification which was clicked and all the
notifications shown while the app is running in foreground. On the rest platforms you'll receive a list of all
the shown notifications, even ones displayed while the app was closed.

You can specify a Dictionary​<​string​, ​string​>​ conaining any custom data which can then be accessed
when handling clicked or received notifications as ​ReceivedNotification​.userData​. Each of the methods
for creating local notifications can accept an optional value of ​userData​. Push notifications payload is
used to get the value of ​userData​ when handling them.

Local notifications example:

Dictionary​<​string​, ​string​> userData = ​new​ ​Dictionary​<​string​, ​string​>();
userData.Add(​"event_type"​, ​"DAILY_GIFT_RECEIVED"​);

Manager​.Instance.ScheduleNotificationRepeating(​DateTime​.Now.AddDays(​1​),
TimeUtils​.DaysToSeconds(​1​), ​"A gift for you!"​,
"Start the game to receive your gift"​, ​5​, userData);

Push notifications example (ADM payload format):

{

 "data":

 {

 <...>,

 "event_type":"DAILY_GIFT_RECEIVED"

 }

}

Now, let’s handle the user data:
// Should be subscribed before initializing UTNotifications.Manager

UTNotifications.Manager.Instance.OnNotificationClicked += (notification) =>

{

 ​if​ (notification.userData != ​null​ &&
 notification.userData.ContainsKey(​"event_type"​))
 {

 ​string​ eventType = notification.userData[​"event_type"​];
 ​switch​ (eventType)
 {

 ​case​ ​"DAILY_GIFT_RECEIVED"​:
 ShowDailyGiftDialog();

 ​break​;

 ​default​:
 Debug.LogWarning(​"Unexpected event_type: "​ + eventType);
 ​break​;
 }

 }

};

Notification Buttons (Android)

Any Android notification can contain an arbitrary number of custom buttons. Each of the buttons has a
title and optionally custom user data as Dictionary​<​string​, ​string​>​.

Each of functions ​UTNotifications.Manager.Instance.PostLocalNotification​,
UTNotifications.Manager.Instance.ScheduleNotification​ and
UTNotifications.Manager.Instance.ScheduleNotificationRepeating​ has optional argument
ICollection​<​Button​> buttons​ to specify the notification buttons, f.e.:

using​ UTNotifications;
using​ System.Collections.Generic;

List​<​Button​> buttons = ​new​ ​List​<​Button​>();
// (Android only) Just a simple button with some custom user data assigned

buttons.Add(​new​ ​Button​(​"Open App"​, ​new​ ​Dictionary​<​String​, ​String​> {{​"button"​,
"first"​}}));
// (Android only) "open_url" in userData opens an URL on a notification click

instead of the application. Can be used for the whole notification or a specific

button, like here.

buttons.Add(​new​ ​Button​(​"Open URL"​, ​new​ ​Dictionary​<​String​, ​String​>{{​"open_url"​,
"https://assetstore.unity.com/packages/tools/utnotifications-professional-local-pu

sh-notification-plugin-37767"​}, {​"button"​,​"second"​}}));
// Repeating scheduled notification

Manager​.Instance.ScheduleNotificationRepeating(​DateTime​.Now.AddSeconds(​10​), ​25​,
"Scheduled Repeating Notification"​, ​"Click to open the app"​,
RepeatingNotificationId, userData, ​"demo_notification_profile"​, ​1​, buttons);

Push notifications (FCM & ADM) can contain custom buttons too:

"data":

{

 <...>,

 "buttons":

 "[

 {

 \"title\":\"<Button title>\",

 \"<Button user data key 1>\":\"<Button user data value 1>\", ...

 },

 <...>

]"

}

Note​ that JSON value of node “​buttons​” is actually a JSON array converted to ​string​.

Buttons are not supported on the rest platforms at the moment and will be ignored on them.

Image Notifications (Android)

With UTNotifications you can create image notifications, i.e. notifications containing large images. It’s
supported with both local and push notifications. In order to create an image notification ​add a user data
argument​ ​“image_url” ​ with a string value, containing an URL of a picture to use. ​“image_url”
value may be a normal https:// URL, or an Android file system URL: ​file:///<full path to a
picture file> ​.

Open URL Notifications (Android)

You can also make clicking on a notification open a specified URL in a browser instead of activating your
application. It’s supported by both local and push notifications. To achieve that behavior ​add a user data
argument​ ​“open_url” ​ which string value should contain an URL to open on a click.
Note​ that on the rest platforms it activates the app instead of following the URL.

Push Notifications Overview

Push notifications, also known as server notifications or remote notifications, are the notifications sent to
a device without a specific request from the client. Unlike local notifications, which don’t include any
server part, push notifications always originate from a server.
Different devices rely on different methods to deliver push notifications. Apple, for example, uses the
Apple Push Notification Service. Different Android devices provide different push notifications services.

Google Play​ featured ones (i.e. most of Android devices) use Firebase Cloud Messaging (FCM, ex
Google Cloud Messaging - GCM). Amazon Android devices (entire ​Kindle Fire​ series) don’t support
FCM and have their own Amazon Device Messaging (ADM) API. Windows 8.1+ and Windows Phones
use Windows Push Notification Services (WNS). UTNotifications rely on OS-specific push notifications
systems internally, but externally provides the common client side API for all the supported services.
No matter what OS and service is used, the general scheme is the same:

1. Initialize and request a unique registration id​. The client application using a push notifications

service (“PNS”: one of APNS, FCM, ADM and WNS) API requests a unique identifier for that
specific PNS of that specific application on that specific device. ​Please ​note​ that in general it
should be done on every start of the app because this identifier can get out of date and the
application will receive a new one.​ With UTNotifications it’s done by calling
UTNotifications.Manager.Instance.​Initialize(...)​ function.

2. Registration id received​. The application (game client) receives the id from PNS API
asynchronously or synchronously. In order to receive it you will subscribe to
UTNotifications.Manager.Instance.​OnSendRegistrationId​ event (please subscribe before
calling the ​Initialize​ function because in some cases receiving the registration id may be done
synchronously​).

3. Store the registration id on your game/notifications server​. You send the received id to your
own server which will later send push notifications. You do it in the delegate subscribed to the
OnSendRegistrationId​ event.

4. Use the stored registration id to send a notification​. Your server requests the server side of
PNS API to send (i.e. “push”) custom notification to one or more clients using their registration ids
which were previously stored. Please see ​DemoServer.PushNotificator​ class source code
(​Assets/UTNotifications/Editor/DemoServer/src/DemoServer/PushNotificator.java​) for
an example.

Note​ that FCM also allows subscribing a device to arbitrary “topics” and then sending push
notifications to all the devices that are subscribed to a particular topic, avoiding the need to
specify any registration ids. See ​the appropriate section​ for more details.

5. The notification is delivered to the appropriate client​. PNS delivers the notification to the
client with the specified registration id. You don’t have to do anything on this stage with
UTNotifications (because it takes care of everything with both Android PNSes and Windows
Store/UWP and there is nothing to be done for iOS). A click on the notification will open your
application: it’s being started if has’t been and goes foreground if it was in the background. If you
would like to handle incoming notifications please see API Reference for
UTNotifications.Manager.​OnNotificationsReceived​ event and
UTNotifications.Manager.​Initialize(...)​ function.

Please ​note​ that every push notification service requires some configuring. This is described in the
sections below.

What You Need for Push Notifications

General

- A server that is connected to the internet. Push notifications are always sent by a server. For
development purposes you can use your computer as the server but for production use you will
typically need at something like a VPS (Virtual Private Server).

iOS: Apple Push Notification Service (APNS)

- An iPhone or iPad. Notifications do not work in the simulator, so you will need to test on the
device.

- An iOS Developer Program membership. You need to make a new App ID and provisioning
profile for each app that uses push, as well as certificates for the server. You do this at the iOS
Provisioning Portal (this is described below).

- An OS X computer.

Android: Firebase Cloud Messaging (FCM)

- Any Google Play featured device with Android 4.4+.
- Please ​note​ that you can’t use Firebase Console for sending push notifications to FCM-enabled

devices due to its limitations. Fore more details see ​Push Notifications Payload Format/FCM​.

Android: Amazon Device Messaging (ADM)

- Any Amazon Kindle Fire device (tablet or phone) except the 1st generation of Kindle Fire tablets
which don’t support push notifications.

Windows Store: Windows Push Notification Services (WNS)

- Any Windows Phone 8.1 or Windows 8.1/10 device.

Push Notifications Payload Format

APNS​ requires any push notifications sent by your server to have a specific format. It is described ​in this
document​.
FCM, ADM & WNS don’t have a single fixed structure of message payloads. Each of them accepts a
JSON data payload, which then is interpreted by the client application. The client application itself is

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CreatingtheNotificationPayload.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CreatingtheNotificationPayload.html

responsible for creating notifications based on the payload received from the appropriate service.
Fortunately, UTNotifications does this job for you. This is why it requires the JSON payload to be in a
specific format, which though you can configure in the asset options in Unity.
The default format looks like:

FCM:
{

 "registration_ids":["<id1>", ...], <or "to":"id1", or "to":"/topics/topic1",>

 "data":

 {

 "title":"<Title>",

 "text":"<Text>",

 "id":<int id>,

 "badge_number":<int badge>,

 "buttons":

 "[

 {

 \"title\":\"<Button title>\",

 \"<Button user data key 1>\":\"<Button user data value 1>\", ...

 }, ...

]",

 "<User data key 1>":"<User data value 1>", ...

 }

}

Please ​note​ that UTNotifications supports “data”-only messages, and Firebase Console can send only
"notification" and "notification" + "data" messages: see
https://firebase.google.com/docs/cloud-messaging/concept-options#notifications_and_data_messages​.
It's important as messages containing "notification" node in their payload are handled by Android itself
when the app is not running. It restricts the app drastically: notification profiles, image notifications and
handling of received notifications gets impossible; it also creates many other issues. This is why you'll
have to send FCM messages either from your own server or using a 3rd party service supporting
"data"-only messages.

FCM Topics

UTNotifications supports ​FCM Topics Messaging​, i.e. sending push notifications to all the devices that
has been subscribed to a specific topic, without a need to specify the target devices’ registration ids.
Use ​UTNotifications.Manager.Instance.SubscribeToTopic("<any topic name>")​ to subscribe to
a topic and ​UTNotifications.Manager.Instance.UnsubscribeFromTopic("<any topic name>")​ to
unsubscribe from it (both calls are ignored on all platforms except Android/FCM).
When sending a Json payload to FCM, specify ​"to":"/topics/<topic name>"​.

ADM:
{

 ​"data":
 ​{
 "title":"<Title>",

https://firebase.google.com/docs/cloud-messaging/concept-options#notifications_and_data_messages
https://firebase.google.com/docs/cloud-messaging/android/topic-messaging

 "text":"<Text>",

 "id":<int id>,

 "badge_number":<int badge>,

 "buttons":

 "[

 {

 \"title\":\"<Button title>\",

 \"<Button user data key 1>\":\"<Button user data value 1>\", ...

 }, ...

]",

 "<User data key 1>":"<User data value 1>", ...

 ​}
}

WNS:
{

 "title":"<Title>",

 "text":"<Text>",

 "id":<int id>,

 "badge_number":<int badge>,

 "<User data key 1>":"<User data value 1>", ...

}

If push server you’re going to use sends push messages in a different format, you can configure it in the
UTNotifications Unity settings: ​Edit -> Project Settings -> UTNotifications ->
Advanced -> Push Payload Format (FCM, ADM, WNS) ​. “data/” prefix is always added to each
of the field names (but it’s ignored on WNS).

Handling Push Registration Failures

There is a number of reasons that can cause registering for push notifications to fail, including
misconfiguration, missing Internet connection and other. In case of a failue, event
UTNotifications.Manager.Instance.​OnSendRegistrationId​ is not invoked, but another one is
invoked instead: ​UTNotifications.Manager.Instance.​OnPushRegistrationFailed​. Please subscribe
to it before initializing the manager if you would like to handle push registration failures.

Configuring Apple Push Notification Service (APNS)

1. In UTNotifications Settings (​Edit -> Project Settings -> UTNotifications​) enable iOS -> Push
Notifications toggle:

2. Follow the official Apple instructions on generating and downloading a .p8 APNS enabled

encryption key:
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_s
erver/establishing_a_token-based_connection_to_apns

3. Specify the credentials in
Assets/UTNotifications/Editor/DemoServer/src/main/java/com/universal_tools/demoserver/PushN
otificator.java​:

- ​APNS_AUTH_KEY​: the contents of the .p8 authentication key, without
-----BEGIN PRIVATE KEY-----​, ​-----END PRIVATE KEY-----​ and any line breaks.
- ​APNS_TEAM_ID​: can be found at ​https://developer.apple.com/account/#/membership/
- ​APNS_KEY_ID​: is included in the .p8 key file name and also be found at
https://developer.apple.com/account/resources/authkeys/list​:

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/establishing_a_token-based_connection_to_apns
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/establishing_a_token-based_connection_to_apns
https://developer.apple.com/account/#/membership/
https://developer.apple.com/account/resources/authkeys/list

- ​APNS_BUNDLE_ID​: your application bundle id, can be found in UTNotifications Settings

4. Save ​PushNotificator.java​, build and start DemoServer, by executing the following script in

Terminal/Command line:
<...>/Assets/UTNotifications/Editor/DemoServer/start_demoserver.sh​ (macOS / Linux)
or
<...>\Assets\UTNotifications\Editor\DemoServer\start_demoserver.bat​ (Windows)

Note​ that you’ll need ​JDK​ and ​Maven​.

5. The running DemoServer will print its hostname (ip address) and port. Please note, that the ip

address it prints can be either a local network address (usually 192.168.*.*) or an external (like on
the screenshot above). In later case, please find your internal IP address in the OS network
settings.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/install.html

6. Temporarily make UTNotifications/Sample/UTNotificationsSample scene default for your Unity
project:

7. Build and run an iOS build. Make sure Push Notifications got enabled in the project Capacities in

Xcode (should be done by UTNotifications post build event automatically):

8. The sample scene should start requesting an URL of DemoServer in order to continue:

9. Make sure your test device and the computer running DemoServer belong to the same local

network (f.e. connected to the same Wi-Fi router). Specify the full URL of the running
DemoServer (as ​http://<ip address>:8080​) and press ​INITIALIZE​:

10. Press ​PUSH NOTIFY ALL REGISTERED DEVICES​ to send a push notification to all the

DemoServer-registered devices. If everything was configured correctly, you should see how

UTNotifications SampleScene handled the push message:

Configuring the Firebase Cloud Messaging (FCM)

Based on FCM official documentation: ​https://firebase.google.com/docs/cloud-messaging/​.
1. Open ​Firebase Developer Console​.
2. Create a new Firebase project or import existing Google Project.
3. Press ​Add Firebase to your Android app​.

4. Enter your app’s bundle id as ​Android package name​ and press ​REGISTER APP​ button (​no

need to specify any other details​).

https://firebase.google.com/docs/cloud-messaging/
https://console.firebase.google.com/

5. Download ​google-services.json​. Store it somewhere. Close the configuration dialog (you don’t
have to press ​Next​ button).

6. Open Firebase Console: ​https://console.firebase.google.com​ and choose the project you’ve just

created/configured.

https://console.firebase.google.com/

7. Open the project settings and switch to tab ​CLOUD MESSAGING​.

8. Copy and store somewhere the value of Server key.

Apply Credentials and Test

1. In Unity open the UTNotifications Settings in menu: ​Edit -> Project Settings ->
UTNotifications​ (Unity restart may be required to see this menu item first time) and enable
Push Notifications​ toggle in the ​Firebase Cloud Messaging​.

2. In ​Firebase Play Settings​ press ​Load google-services.json​ button to load and apply the
configuration file you obtained previously.

3. Specify the credentials in

Assets/UTNotifications/Editor/DemoServer/src/main/java/com/universal_tools/demoserver/PushN
otificator.java​:

- ​FIREBASE_SERVER_KEY​: The value of server key you’ve copied from Firebase Console
previously.

4. Save ​PushNotificator.java​, build and start DemoServer, by executing the following script in
Terminal/Command line:
<...>/Assets/UTNotifications/Editor/DemoServer/start_demoserver.sh​ (macOS / Linux)
or
<...>\Assets\UTNotifications\Editor\DemoServer\start_demoserver.bat​ (Windows)

Note​ that you’ll need ​JDK​ and ​Maven​.

5. The running DemoServer will print its hostname (ip address) and port. Please note, that the ip

address it prints can be either a local network address (usually 192.168.*.*) or an external (like on
the screenshot above). In later case, please find your internal IP address in the OS network
settings.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/install.html

6. Temporarily make UTNotifications/Sample/UTNotificationsSample scene default for your Unity
project:

7. Build and run the application in a target Android device. The sample scene should start
requesting an URL of DemoServer in order to continue:

8. Make sure your test device and the computer running DemoServer belong to the same local

network (f.e. connected to the same Wi-Fi router). Specify the full URL of the running
DemoServer (as ​http://<ip address>:8080​) and press ​INITIALIZE​:

9. Press ​PUSH NOTIFY ALL REGISTERED DEVICES​ to send a push notification to all the

DemoServer-registered devices. If everything was configured correctly, you should see how

UTNotifications SampleScene handled the push message:

Configuring the Amazon Device Messaging (ADM)

Based on ADM official documentation:
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-crede
ntials

https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials

Getting Your OAuth Credentials and API Key

1. In UTNotifications Settings (​Edit -> Project Settings -> UTNotifications​) enable Android ->
Amazon Device Messaging toggle:

2. Create an account on the ​Amazon Apps & Games Developer Portal​ and add your app, if you

have not already done so.
3. In ​Apps & Services​ > ​My Apps​, select the app with which you want to use ADM or create a new

one.

https://developer.amazon.com/public

4. Locate ​App Services​ > ​Device Messaging​.

5. To assign a security profile to your app, choose an existing security profile from ​Select Profile​ or

click ​Create Security Profile​. A security profile provides the OAuth credentials that you use
when sending messages with ADM.
Note​: You can share the use of a security profile with more than one app. Sharing a profile allows
apps to share some types of data. For example, you may have a "My Cat - Free" app and a "My
Cat - HD" app. If you apply a single security profile to both apps, data accessed by that profile is
available to both apps. For a shared profile, choose a name that applies to both, for example, "My
Cat Apps profile".

6. Click ​Enable Device Messaging​ button after assigning a security profile to the app.
7. Click ​View Security Profile​.

8. Store somewhere the ​Client ID​ and ​Client Secret​ values from the ​Web Settings​ tab.

9. Then click the ​Android/Kindle Settings​ tab.
10. Create an ​API Key​. Your app requires one or more API Keys.

- (​Required​) For a pre-release or "debug" version of your app. In all cases, you must create an
API Key for the debug version of your app, in order to test your app with ADM.

- (​Optional​) For a release or "production" version of your app. If you sign the release version
of your app using your own certificate, you must create an additional API Key for the release
version of your app. If you allow Amazon to sign your app on your behalf, you do not need to
create an additional API Key.

To create an API Key, you must provide both the package name (for example,
com.mycompany.bestapplication​) for the app and its signature:
- Debug​ application signature for the pre-release version of your app.

a. In Unity open the UTNotifications Settings in menu: ​Edit​ -> ​Project Settings​ ->
UTNotifications​ (Unity restart may be required to see this menu item first time) and
enable ​Push Notifications​ toggle in the ​Amazon Device Messaging​.

b. Copy and paste the ​Package Name​, ​Android debug signature MD5​ and ​Android
debug signature SHA256​ hints from ​UTNotifications Settings​ / ​Android​ / ​Amazon
Device Messaging ​to the Amazon ​Security Profile​ fields ​Package​, ​MD5 Signature
and ​SHA256 Signature ​appropriately.
Note​: If you don’t see the ​Android debug signature MD5​ hint value please build the
Android version at least once successfully. If getting the ​Android debug signature MD5
is still failed after that, please see
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtain
ing-adm-credentials​.

https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials

- Release​ application signature for the production version of your app. If you sign the release

version of your app using your own certificate, provide the MD5 signature for that certificate
to create an additional API Key (more details at
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-
adm-credentials​). If you allow Amazon to sign your app on your behalf, you do not need to
obtain an API Key for the release signature.

https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials

11. Click ​Generate New Key​.

12. Store the retrieved ​API Key​ somewhere.

Note​: It shouldn’t contain any spaces or newline characters.

Apply Credentials and Test

1. Specify the ​API Key​ from step 12 of ​Getting Your OAuth Credentials and API Key​ as the value
for ​Amazon Debug API Key​ in UTNotifications settings in Unity:

2. Specify the credentials in

Assets/UTNotifications/Editor/DemoServer/src/main/java/com/universal_tools/demoserver/PushN
otificator.java​:

- ​AMAZON_CLIENT_ID​: Client ID value you’ve got in step 8 of ​Getting Your OAuth Credentials
and API Key​.
- ​AMAZON_CLIENT_SECRET​: Client Secret value you’ve got in step 8 of ​Getting Your OAuth
Credentials and API Key​.

3. Save ​PushNotificator.java​, build and start DemoServer, by executing the following script in
Terminal/Command line:
<...>/Assets/UTNotifications/Editor/DemoServer/start_demoserver.sh​ (macOS / Linux)
or
<...>\Assets\UTNotifications\Editor\DemoServer\start_demoserver.bat​ (Windows)

Note​ that you’ll need ​JDK​ and ​Maven​.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/install.html

4. The running DemoServer will print its hostname (ip address) and port. Please note, that the ip
address it prints can be either a local network address (usually 192.168.*.*) or an external (like on
the screenshot above). In later case, please find your internal IP address in the OS network
settings.

5. Temporarily make UTNotifications/Sample/UTNotificationsSample scene default for your Unity
project:

6. Build and run the application in a target Kindle Fire device. The sample scene should start
requesting an URL of DemoServer in order to continue:

7. Make sure your test device and the computer running DemoServer belong to the same local

network (f.e. connected to the same Wi-Fi router). Specify the full URL of the running
DemoServer (as ​http://<ip address>:8080​) and press ​INITIALIZE​:

8. Press ​PUSH NOTIFY ALL REGISTERED DEVICES​ to send a push notification to all the

DemoServer-registered devices. If everything was configured correctly, you should see how

UTNotifications SampleScene handled the push message:

Configuring the Windows Push Notification Services (WNS)

Based on WNS official documentation:
https://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx​.

Register your app with the Dashboard

Before you can send notifications through WNS, you must register your app. Do so through the
Dashboard​, the developer portal that enables you to submit, certify, and manage your Windows Store

https://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
https://dev.windows.com/overview

apps. When you register your app through the Dashboard, you are given credentials—a Package
security identifier (SID) and a secret key—which your cloud service uses to authenticate itself with WNS.

To register:

1. Go to the ​Windows Store apps page​ of the Windows Dev Center and sign in with your Microsoft
account.
Please ​note​, that you need a valid Windows developer account in order to proceed.

2. Once you have signed in, click the ​Dashboard​ link.
3. On the Dashboard, click ​Create a new app​.

4. Choose a name and click “Reserve product name” to register an app.

https://dev.windows.com/
https://dev.windows.com/overview

Obtain the identity values for your app

When you reserved a name for your app, the Windows Store created your associated credentials. It also
assigned associated identity values—name and publisher.

1. Click at ​Product Management​ -> ​WNS/MPNS​ in the left menu.
2. Press on a link ​Live Services site​.

3. Save somewhere the following values: ​Application Secret​, ​Package SID​, ​Identity Name​ &

Publisher.

4. In Unity open the UTNotifications Settings in menu: ​Edit​ -> ​Project Settings​ ->

UTNotifications​ (Unity restart may be required to see this menu item first time) and enable
Push Notifications​ toggle in the ​Windows Store Settings​.

5. Open Windows Store player settings: ​File​ -> ​Build Settings…​ -> ​Windows Store​ -> ​Player
Settings​.

6. Use ​Identity Name​ value from 3rd step as ​Package Name​.

7. Press Create button to create a certificate.

8. Use ​Publisher​ from the 3rd step for ​Publisher​. Don’t include starting ​CN=​ to this value, only the

rest. Note, that at least the certificate creation dialog in Unity is buggy (it’s not optimized for such
a long values of Publisher). It works fine anyway.

Apply Credentials and Test

1. Specify the credentials in

Assets/UTNotifications/Editor/DemoServer/src/main/java/com/universal_tools/demoserver/PushN
otificator.java​:

- ​WINDOWS_PACKAGE_SID​: Package SID you got in 3rd step of ​Obtain the identity values for
your app​ section.
- ​WINDOWS_CLIENT_SECRET​: Client secret you got in 3rd step of ​Obtain the identity values
for your app​ section.

2. Save ​PushNotificator.java​, build and start DemoServer, by executing the following script in
Terminal/Command line:
<...>/Assets/UTNotifications/Editor/DemoServer/start_demoserver.sh​ (macOS / Linux)
or
<...>\Assets\UTNotifications\Editor\DemoServer\start_demoserver.bat​ (Windows)

Note​ that you’ll need ​JDK​ and ​Maven​.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/install.html

3. The running DemoServer will print its hostname (ip address) and port. Please note, that the ip

address it prints can be either a local network address (usually 192.168.*.*) or an external (like on
the screenshot above). In later case, please find your internal IP address in the OS network
settings.

4. Temporarily make UTNotifications/Sample/UTNotificationsSample scene default for your Unity
project:

5. Build and run the application in a target UWP device (a Windows 8.1+ computer / Windows
Phone). The sample scene should start requesting an URL of DemoServer in order to continue:

6. Make sure your test device and the computer running DemoServer belong to the same local

network (f.e. connected to the same Wi-Fi router). Specify the full URL of the running
DemoServer (as ​http://<ip address>:8080​) and press ​INITIALIZE​:

7. Press ​PUSH NOTIFY ALL REGISTERED DEVICES​ to send a push notification to all the

DemoServer-registered devices. If everything was configured correctly, you should see how

UTNotifications SampleScene handled the push message:

Contacts

If you got any questions please feel free to contact us: ​universal.tools.contact@gmail.com​.
You can post bugs and feature requests at
https://github.com/universal-tools/UTNotificationsFeedback/issues​.

If you liked using UTNotifications, please ​rate it​, but any criticism is also welcome - please help us make
the asset better!

Thank you for using UTNotifications!
Your Universal Tools team.

mailto:universal.tools.contact@gmail.com
https://github.com/universal-tools/UTNotificationsFeedback/issues
https://assetstore.unity.com/packages/tools/utnotifications-professional-local-push-notification-plugin-37767

