UTNotifications Manual
Version 1.6

Introduction

Getting Started

Creating Local Notifications

Custom User Data & Handling Notifications

Using Notification Profiles (Sounds & Icons Settings)

Image Notifications (Android)

Push Notifications Overview

What You Need for Push Notifications
General
iOS: Apple Push Notification Service (APNS)
Android: Google Cloud Messaging (GCM)
Android: Amazon Device Messaging (ADM)
Windows Store: Windows Push Notification Services (WNS)

Push Notifications Payload Format

Configuring the Apple Push Notification Service (APNS)
Provisioning Profiles and Certificates.
Generating the Certificate Signing Request (CSR)
Making the App ID and SSL Certificate
Converting the aps_development.cer File
Making the Provisioning Profile
Apply Credentials and Test

Configuring the Google Cloud Messaging (GCM)
Enable Google Cloud Messaging
Apply Credentials and Test

Configuring the Amazon Device Messaging (ADM)
Getting Your OAuth Credentials and API Key
Apply Credentials and Test

Configuring the Windows Push Notification Services (WNS)
Reqister your app with the Dashboard
Obtain the identity values for your app
Apply Credentials and Test

Unicode Support

Contacts

Introduction
API Reference | Forum | Support Email | Issue Tracking

UTNotifications is an advanced and professional Unity extension that is yet very convenient
and easy to use. It provides a convenient cross-platform API for posting and handling local,
scheduled (including those appearing once and those repeating) and push notifications.
Currently it fully supports iOS, Android (Google Play and Amazon Kindle Android devices)
and Windows Store (Windows Phone 8.1, Windows 8.1/10, Universal 8.1, Universal 10).

Features:

- Immediate local notifications.

- Scheduled (those appearing once and those repeating) local notifications with
automated restoring on device reboot.

- Push natifications.

- 2 Android push notifications services: Google Cloud Messaging (GCM) & Amazon
Device Messaging (ADM) in a single build.

- Completely cross-platform API.

- The full source code is provided as well as the code of the native plugins so one can
change and adjust anything one likes.

- A demo push notifications provider web server with the source code is included.

- Default or custom notifications sounds and icons.

- A detailed manual and an API Reference docs are included.

- Convenient Unity editor extension for configuring.

- Android & Windows Store manifest files automated patching.

- Notifications enabling/disabling API for all supported platforms allows one to add
notifications toggle to the game options.

- API for handling clicked & received notifications of any type both local and push.

- One can attach custom data to the notification of any type and access it while
handling the received notification.

- Hiding or cancelling a specific notification or all of them.

- Application icon badge number management API for iOS and Android.

- Android grouped notifications.

- Image notifications on Android.

- A sample & test scene.

UTNotifications consists of two main parts: Unity client extension and a demo server which
shows you how to send push (remote) notifications. For the production version of your
project you'll have to use your own game server or a dedicated notifications server but you
can use the provided demo server source code as you like. There is also a number of
third-party solutions for the push notification servers, such as free and open source
Uniqush, and services, such as OneSignal, which are compatible with UTNoaotifications as it
uses plain iOS, Google Play, Amazon & Windows push notifications services. You can also
use the UTNotifications for local/scheduled notifications only, in that case you don’t need any
server. Unity client extension uses native plugins so you have to use any edition of Unity 5

http://universal-tools.github.io/UTNotifications/html/annotated.html
http://forum.unity3d.com/threads/released-utnotifications-professional-cross-platform-push-notifications-and-more.333045/
mailto:universal.tools.contact@gmail.com
https://github.com/universal-tools/UTNotificationsFeedback/issues
http://uniqush.org/
https://onesignal.com/

(works fine even with Personal edition) or Unity 4.x Pro. Neither iOS Pro nor Android Pro are
required. Minimal supported version of Unity is 4.6.

Getting Started

Once you installed the UTNotifications asset into your project, you're able to open its
settings from Unity menu: Edit -> Project Settings -> UTNotifications (Unity restart may be
required first time to see this menu item).

© inspector [NGRS
@
(2een)

Local notifications doesn’t require any additional setting up. Configuring of push notifications
services is described below.

There is an example scene:
Assets/UTNotifications/Sample/UTNotificationsSample.unitwhich you can use to
get familiar with most of the UTNotifications features and how to use them. It also helps you
to check if the configuration is correct.

Development Build

You can also add the UTNotifications .UTNotificationsSamplescript
(Assets/UTNotifications/Sample/UTNotificationsSample.x)to any GameObjectin
your own scene to access this test menu. Please note that notifications are not available in
some device emulators and in the Unity editor, so please deploy to a device in order test or
debug notifications related functionality.

You can find an API Reference in UTNotifications Unity Settings and here.

Creating Local Notifications

Local notifications are notifications, shown by request of the client application itself. With
UTNotifications you can show immediate, scheduled and repeated scheduled local
notifications.

First thing you need to know, is that entire UTNotifications APl is placed in a namespace
UTNotifications S0 you may want to add a using statement to easily access that
namespace:

using UTNotifications;
Now let’s Initialize uTNotifications.Manager It should be done before accessing any

UTNotifications methods. Some MonoBehaviour's awake () or start () method is a good
place for it:

http://universal-tools.github.io/UTNotifications/html/annotated.html

public void Start()
{

UTNotifications.Manager.Instance.Initialize(false);

Note, that UTNotifications.Manager.Instance (or just Manager.Instance if you added

using UTNotifications) is a main access point to all UTNotifications methods. It returns a
singletone instance of the UTNotifications.Manager class. We provided false here as a value
of the argument willHandleReceivedNotificationsof

UTNotifications Manager.Initializeas we don’t have an intention to handle shown
notifications right now. For more info on handling notifications, please see the appropriate
section.

Now you can start creating local notifications. F.e.:
UTNotifications.Manager.Instance.PostLocalNotification(, ;1)

It creates an immediate local notification with title “Title”, text “Text” and id = 1. Notification
ids are used to identify each notification. F.e. a new notification with the same id as an old
one replaces that old notification instead of creating second separate notification. id is also
used to hide or cancel a specific notification (see an API Reference for details).

Note that with default settings, you will not see or hear any immediate notifications on any
platforms (because by default notifications are not shown while an application is running).
You can configure that behaviour in UTNotifications Settings: Common Android Settings
-> Show Notifications & Windows Store Settings -> Notify only when app is closed or
hidden. Unfortunately, iOS doesn’t allow to control this behaviour - you will never see
notifications while an app is running on iOS.

Let’s now schedule a local notification:
UTNotifications.Manager.Instance.ScheduleNotification(15, , , 2);

It will create a local notification with title “Title”, text “Text” and id = 2, which fill be triggered in
15 seconds after that code is executed. You can also specify a System.DateTime value as a
first argument. It will be a date and time to trigger a notification.

Similarly, you can create a repeated scheduled notification:
UTNotifications.Manager.Instance.ScheduleNotificationRepeating(5, 25, : , 3);

This notification with title “Title”, text “Text” and id = 3 will be shown first time in 5 seconds
after that code is executed and then will be repeated every 25 seconds. There is also a
System.DateTime version of this method.

Note that the repeating times are approximate, and may differ, especially on iOS, where only
fixed options like every minute, every day, every week and so on are available. So the
provided interval value will be approximated by one of the available options.

On Android, there is a way to show a notification, containing an image:
Manager.Instance.ScheduleNotification(10, "Image Notification", "Image notification text",
4, new Dictionary<string, string>
{
{"image_url", "http://thecatapi.com/api/images/get?format=src&type=png&size=med"}

1

For more details on image notifications see Image Notifications (Android).

You can also configure notifications icons and sounds. For more details see Using
Notification Profiles (Sounds & Icons Settings).

Custom User Data & Handling Notifications

UTNotifications provide a way to handle a list of all notifications shown before or when an
app was running, and also a notification which was clicked by user. Besides, each of
notifications (local and push) can contain some custom data, which can be read when
handling a clicked or received notification.

For that you can subscribe on UTNotifications.Manager events onNotificationClicked&
OnNotificationsReceivedbefore initializing UTNotifications. F.e.:
UTNotifications.Manager notificationsManager = UTNotifications.Manager.Instance;

notificationsManager.OnNotificationClicked += (notification) =>

{

Debug.Log(natification.text + " clicked");

|3

notificationsManager.OnNotificationsReceived += (receivedNotifications) =>

{

foreach (var notification in receivedNotifications)

{

Debug.Log(notification.text + " received/triggered");

2
notificationsManager.Initialize(true);

Here we provided true as a value of the argument willHandleReceivedNotificationsof
UTNotifications Manager.Initialize, as we want to handle received notifications with
OnNotificationsReceived Never set it to true if you don’t want to handle received
notifications, as it can be heavy for an app performance. Handling clicked notifications
doesn’t require true for willHandleReceivedNotificationsargument.

Note that iOS doesn't provide a list of all notifications shown when an app wasn't running in
foreground. Received notifications list will contain only a notification, which was clicked and
all notifications shown when an app is running in foreground. On other platforms, you'll
receive a list of all shown notifications, even ones shown when an app was closed.

You can provide a <string, string> dictionary, conaining any custom data, which can then be
accessed when handling clicked or received notifications as ReceivedNotification.userData.
Each of methods for creating local notifications can accept an optional value userbata. Push
notifications’ payload is used to get a value of the userpata when handling them.

F.e. with local notifications:
Dictionary<string, string> userData = new Dictionary<string, string>();
userData.Add("event_type", "DAILY_GIFT_RECEIVED"),

Manager.Instance.ScheduleNotificationRepeating(DateTime.Now.AddDays(1),
TimeUtils.DaysToSeconds(1), "A gift for you!", "Start the game to receive your gift", 5,
userData);

F.e. with push notifications (ADM payload format):

{
"data":

{
<o.>y,
"event type":"DAILY GIFT RECEIVED"

}

And then let’s handle it:
// Should be subscribed before initializing UTNotifications.Manager
UTNotifications.Manager.Instance.OnNotificationClicked += (notification) =>

{

if (notification.userData != null && notification.userData.ContainsKey("event type"))
{
string eventType = notification.userData["event type'];
switch (eventType)
{
case "DAILY_ GIFT_RECEIVED":
ShowDailyGiftDialog();
break;

default:
Debug.LogWarning("Unexpected event type: " + eventType);
break;

}
}
|5

Using Notification Profiles (Sounds & Icons Settings)

By default any notification will be posted with a default system notification sound and the
application icon. UTNotifications allow to define custom sounds and icons for notifications
(custom notification icons are not supported by iOS, no customization is currently supported

on Windows Store). What sound and icon is used for a specific notification is defined by a
notification profile - named set of the notification options.

For example, the game has two kinds of notifications - when a player receives a gift and
when some in-game research is complete. You then can define two notification profiles:
“gift” & “research complete” . First one will use a gift box icon when shown and
some specific sound, and second one will have a bulb icon and another sound.

You can create and edit the notification profiles in UTNotifications editor: Edit -> Project
Settings -> UTNotifications -> Notification Profiles (Sounds & Icons).

Each of functions UTNotifications.Manager.Instance.PostLocalNotificatign
UTNotifications.Manager.Instance.ScheduleNotificatioand
UTNotifications.Manager.Instance.ScheduleNotificationRepeatinhbas the optional
argument string notificationProfile which defines a name of a notification profile used for
this notification.

For the push notifications you can also specify a notification profile.
- i0S (APNS).
Notification profile name is specified as a sound in the APNS json payload:
{
"aps":
{
<. 00>
"sound" : "Data/Raw/<NOTIFICATION PROFILE NAME>"

}
Note that <NOTIFICATION PROFILE NAME> should not contain any file extension.

- Android.
Notification profile name is stored in the “data” node of the notification json.
GCM:
{

"registration ids":<...>,
"data" .

{
<...0>,

"notification profile" !/<NOTIFICATION PROFILE NAME>"

ADM:
"data":

< o>,
"notification_profile"T<NOTIFICATION PROFILE NAME>"

- Windows Store (WNS):
Notification profile name is stored in the payload json root node:

<...>y
"notification profile" !<NOTIFICATION PROFILE NAME>"
}

Push notifications sent from the UTNotificationsSample (Notify all registered deviceg
use the notification profile “demo notification profile” You can try configuring a profile
with that name to see how the feature works. If the requested notification profile is not found,
the default sound and icons will be used.

There is a predefined profile “default”, which is used on Android when no notification
profile is specified for a notification. It's important to configure at least its Small Icon
(Android 5.0+): Android, starting with a version 5.0, ignores any color information of small
notification icons: the icons are considered to be completely white and only alpha channel of
the icons is applied (so icons can be only white & transparent). So any non-transparent icons
turn into just white squares when using as small notification icons.

Image Notifications (Android)

With UTNotifications you can create image notifications, i.e. notifications containing large
images. It's supported with both local and push notifications. In order to create an image
notification add a user data argument “image url” with a string value, containing an URL
of a picture to use. “image url” value may be a normal http:// or https:// URL, or an
Android file system URL: file:///<full path to a picture file> .

Push Notifications Overview

Push notifications, also known as server notifications or remote notifications, are the
notifications to a device without a specific request from the client. Unlike local notifications,
which don’t include any server part, push notifications always originate from a server.
Different devices rely on different methods to deliver push notifications. Apple, for example,
uses the Apple Push Notification Service. Android doesn’t have a common system, but
different Android devices provide different push notifications services. Google Play featured
ones (i.e. most of Android devices) use Google Cloud Messaging (GCM) and Firebase
Cloud Messaging (FCM) (UTNotifications are going to use FCM on Android instead of GCM
starting with version 1.7). Amazon Android devices (entire Kindle Fire series) don’t support
GCM and have their own Amazon Device Messaging (ADM) API. Windows 8.1+ and
Windows Phones use Windows Push Notification Services (WNS). UTNotifications rely on
OS specific push notifications systems internally, but externally provides the common for all
the supported services client side API.

No matter what OS and service is used, the general scheme is the same:

1. Initialize and request a
unigue client registrationid

roa

2. Registration id received

A

3. Store the registration id on your game/notifications server

-

4. Use the stored registration
Jid to send a notification

-

5. The notification is delivered
_to the appropriate client

Initialize and request a unique registration id. The client application using a push
notifications service (“PNS”: one of APNS, GCM, ADM and WNS) API requests a
unique identifier for that specific PNS of that specific application on that specific
device. Please note that in general it should be done on every start of the app
because this identifier can get out of date and the application would receive a new
one. With UTNotifications it's done by calling
UTNotifications.Manager.InstancelInitialize (...)function.

Registration id received. The application (game client) receives the id from PNS
API asynchronously or synchronously. In order to receive it you will subscribe to
UTNotifications.Manager.InstanceOnSendRegistrationIdevent (please
subscribe before calling the 1nitializefunction because in some cases receiving
the registration id may be done synchronously).

Store the registration id on your game/notifications server. You send the
received id to your own server which will later send push notifications. You do it in the
delegate subscribed to the onsendregistrationidevent.

Use the stored registration id to send a notification. Your server requests the
server side of PNS API to send (i.e. “push”) custom notification to one or more clients
using their registration ids which were previously stored. Please see
DemoServer.PushNotificatorclass source code
(Assets/UTNotifications/Editor/DemoServer/src/DmoServer/PushNotificato
r.java) for an example.

5. The notification is delivered to the appropriate client. PNS delivers the
notification to the client with specified registration id. You don’t have to do anything
on this stage with UTNotifications (cause it takes care of everything with both Android
PNSes and there is nothing to be done on iOS). A click on the notification will open
your application: it's being started if has’t been and goes foreground if it was in a
background. If you would like to handle incoming notifications please see API
Reference for UTNotifications.Manager OnNotificationsReceivedevent and
UTNotifications.Manager Initialize(...) function.

Please note that every push notification service requires some configuring. This is described
in the sections below.

What You Need for Push Notifications

General
- A server that is connected to the internet. Push notifications are always sent by a
server. For development you can use your computer as the server but for production
use, you need at least something like a VPS (Virtual Private Server).
A cheap shared hosting account is not good enough in most cases. You need to be
able to run a background process on the server and be able to make outgoing TLS
connections on certain ports.

iOS: Apple Push Notification Service (APNS)

- AniPhone or iPad. Notifications do not work in the simulator, so you will need to test
on the device.

- AniOS Developer Program membership. You need to make a new App ID and
provisioning profile for each app that uses push, as well as an SSL certificate for the
server. You do this at the iOS Provisioning Portal (this is described below).

- An OS X computer.

Android: Google Cloud Messaging (GCM)
- Any Google Play featured device with Android 2.3.3+.

Android: Amazon Device Messaging (ADM)
- Any Amazon Kindle Fire device (tablet or phone) except the 1st generation of Kindle
Fire tablets which don’t support push notifications.

Windows Store: Windows Push Notification Services (WNS)
- Any Windows Phone 8.1 or Windows 8.1/10 device.

Push Notifications Payload Format

APNS requires any push notifications sent by your server to have a specific format. It is
describe in this document.

Unlike it, GCM, ADM & WNS don’t have one common format of the message payload. Each
of them accepts a JSON data payload, which then is interpreted by the client application.
The client application itself is responsible for creating notifications based on the payload
received from the appropriate service. Fortunately, UTNotifications does this nasty job for

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/TheNotificationPayload.html

you. This is why it requires the JSON payload to be in a specific format, which though you
can configure. The default format looks like:

GCM:
{
"registration ids":["<idl>", ...], <or "to":"idl",>
"data":
{
"title":"<Title>",
"text":"<Text>",
["id":<int 1id>,]
["badge number":<int badge>,]
["notification profile":"<profile name>",]
["image url":"<picture URL>",]
["<User data key 1>":"<User data value 1>",
-1
}
}
ADM:
{
"data":
{
"title":"<Title>",
"text":"<Text>",
["id":<int id>,]
["badge number":<int badge>,]
["notification profile":"<profile name>",]
["image url":"<picture URL>",]
["<User data key 1>":"<User data value 1>",
-1
}
}
WNS:

"title":"<Title>",
"text":"<Text>",

"id":<int id>,]

"badge number":<int badge>,]

"image url":"<picture URL>",]
"<User data key 1>":"<User data value 1>",

-]

[
[
["notification profile":"<profile name>",]
[
[

If push server you're going to use sends push messages in a different format, you can
configure it in the UTNotifications Unity settings: Edit -> Project Settings ->
UTNotifications -> Advanced -> Push Payload Format (GCM, ADM, WNS)
“data/” prefix is always added to each of the field names (but it's ignored on WNS).

Configuring the Apple Push Notification Service (APNS)

This section was created using this article:
http://www.raywenderlich.com/32960/apple-push-notification-services-in-ios-6-tutorial-part-1
Here is described configuring the APNS for an application called PushChat, you'll replace it
with your project name.

Provisioning Profiles and Certificates.

To enable push notifications in the iOS version of

your app, it needs to be signed with a O sttt
provisioning profile that is configured for push. In =y
addition, your server needs to sign its
communications to APNS with an SSL certificate.
The provisioning profile and SSL certificate are
closely tied together and are only valid for a single App ID. This is a protection that ensures
only your server can send push notifications to instances of your app, and no one else.

As you know, apps use different provisioning profiles for development and distribution. There
are also two types of push server certificates:

- Development. If your app is running in Debug mode and is signed with the
Development provisioning profile (Code Signing Identity is “iPhone Developer”), then
your server must be using the Development certificate.

- Production. Apps that are distributed as Ad Hoc or on the App Store (when Code
Signing Identify is “iPhone Distribution”) must talk to a server that uses the
Production certificate. If there is a mismatch between these, push notifications cannot
be delivered to your app.

In this manual, you won’t bother with the distribution profiles and certificates and just use the
ones for development. But steps for the production certificates are very similar (you just
choose “production” instead of “development” on every step that contains this option). Of
course there is no need to create an extra App ID for it, you just need to setup its
“production” part (find more about it below).

Apple Development Push 5«

Issued by: Apple Worldwide Develd
Expires: Sunday, August 7, 2011 1

& This certificate is valid

Generating the Certificate Signing Request (CSR)

Remember how you had to go to the iOS Provisioning Portal and make a Development
Certificate after you signed up for the iOS Developer Program? If so, then these next steps
should be familiar. Still, | advise you to follow them exactly. Most of the problems people
have with getting push notifications to work are due to problems with the certificates.
Digital certificates are based on public-private key cryptography. You don’t need to know
anything about cryptography to use certificates, but you do need to be aware that a
certificate always works in combination with a private key.

The certificate is the public part of this key pair. It is safe to give it to others, which is exactly
what happens when you communicate over SSL. The private key, however, should be
kept... private. It's a secret. Your private key is nobody’s business but your own. It's
important to know that you can’t use the certificate if you don’t have the private key.

http://www.raywenderlich.com/32960/apple-push-notification-services-in-ios-6-tutorial-part-1

Whenever you apply for a digital certificate, you need to provide a Certificate Signing
Request, or CSR for short. When you create the CSR, a new private key is made that is put
into your keychain. You then send the CSR to a certificate authority (in this case that is the
iOS Developer Portal), which will generate the SSL certificate for you based on the
information in the CSR.

Open Keychain Access on your Mac (it is in Applications/Utilities) and choose the menu

option Request a Certificate from a Certificate Authority...

& WEEETEEET File Edit View Window Help
About Keychain Access

Preferences... %,

Keychain First Aid L #BA

Certificate Assistant Open...

Ticket Viewer Create a Certificate...

Create a Certificate Authority...

Create a Certificate For Someone Else as a Certificate Authority...
Hide Keychain Access %H Request a Certificate From a Certificate Authority...

Hide Others “C®y Set the default Certificate Authority...

Show All Evaluate a Certificate...

Services

Quit Keychain Access ®Q

If you do not have this menu option or it says “Request a Certificate from a Certificate
Authority with key”, then download and install the WWDR Intermediate Certificate first.
Also make sure no private key is selected in the main Keychain Access window.

You should now see the following window:
AN -

Certificate Information

Enter information for the certificate you are requesting.
Click Continue to request a certificate from the CA,

Comman Name: | PushChat

CA Email Address:

Request is; () Emalled 1o the CA
a Saved to disk
1 e e specify key pair information

[Continue)

Enter your email address here. I've heard people recommended you use the same email
address that you used to sign up for the iOS Developer Program, but it seems to accept any
email address just fine.

You can type anything you want for Common Name, but choose something descriptive.
This allows us to easily find the private key later. Let’s type PushChat here.

Check Saved to disk and click Continue. Save the file as
“PushChat.certSigningRequest.

If you go to the Keys section of Keychain Access, you will see that a new private key has
appeared in your keychain.

https://developer.apple.com/certificationauthority/AppleWWDRCA.cer

Making the App ID and SSL Certificate
Log in to the certificates section of iOS Dev Center:
https://developer.apple.com/account/ios/certificate/.

Note: App ID creation may not work with some browsers (f.e. | had issues with Google
Chrome) so please do it in Safari.

You will be presented with the following screen:

@ Developer Discover Design Develop Distribute Support Account
Certificates, Identifiers & Profiles -
(’ i0S, tvOS, watchOS iOS Certificates + || Q
¥ Certificates 3 Certificates Total
All Name Type Expires
Pending

Development

Froduction

10| Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Groups

Merchant IDs

[Devices
All
Apple TV
Apple Watch
iPad
iPhone

iPod Touch

| Provisioning Profiles
All
Development

Distribution

Since you’re making an iOS app select iOS, tvOS, watchOS in the left panel.
Now, you are going to make a new App ID. Each push app needs its own unique ID because
push notifications are sent to a specific application. (You cannot use a wildcard ID.)

https://developer.apple.com/account/ios/certificate/

Go to App IDs in the sidebar and click the + button.

‘ Developer Technologies Resources Programs Support Member Center Q
Certificates, Identifiers & Profiles -
i0S Apps - i0S App IDs + [&
¥ Certificates 9 App IDs Total
I Identifiers [Name - D
App IDs
Pass Type IDs
[] Devices

[Provisioning Profiles

Fill the following details:

- App ID Description: PushChat.

- Explicit App ID: f.e. com.uttest.pushchat. You’'ll have to type your own Bundle
Identifier here — the same as set in Unity Player Settings for iOS — instead of using
this example one. Note that if the Bundle Identifier in Unity Player Settings for iOS is
‘com.Company.ProductName you have to replace it by your own first!

- App Services Check the Push Notifications Checkbox.

After you’re done filling all the details press the Continue button. You will be asked to verify
the details of the app id, if everything seems okay click Submit.
Hurray! You have successfully registered a new App ID.

ID Registration complete.

This App ID is now registered to your account and can be used in your provisioning profiles.

App ID Description: PushChat
Identifier: I
Data Protection: © Disable
Game Center: ® Enabled
iCloud:
In-App Purchase: ® Enabled
Passhook: © Disabled

Push Notifications: @ Enabled

In a few moments, you will generate the SSL certificate that your push server uses to make
a secure connection to APNS. This certificate is linked with your App ID. Your server can
only send push notifications to that particular app, not to any other apps.

http://docs.unity3d.com/Manual/class-PlayerSettingsiOS.html

After you have made the App ID, it shows up like this in the list:

Name: PushChat
I D Prefix:

1D: .pushchat

Application Services:

Service Development Distribution
App Group © Disabled * Disabled
Associated Domains Disabled _ Disabled
Data Protection Disabled @ Disabled
Game Center @ Enabled @ Enabled
HealthKit Disabled Disabled
HomeKit * Disabled () Disabled
:;:eﬁlegs:r;:zssow Disabled ~ Disabled
iCloud Disabled Disabled
In-App Purchase @ Enabled @ Enabled
Inter-App Audio Disabled Disabled
Apple Pay © Disabled) Disabled
Passhook Disabled Disabled
Push Notifications Configurable > Configurable
VPN Configuration & Control ' Disabled ' Disabled

Edit

Notice in the “Push Notifications” row, there are two orange lights that say “Configurable”
in the Development and Distribution column. This means your App ID can be used with
push, but you still need to set this up. Click on the Edit button to configure these settings.

Scroll down to the Push Notifications section and select the Create Certificate button in
the Development SSL Certificate section.

a ;ush N(l)tlflcatlons &

Apple Push Notification service SSL Certificates

To configure push notifications for this i0S App ID, a Client S5L Certificate that allows your
notification server to connect to the Apple Push Notification Service is required. Each iOS App ID
requires its own Client S5L Certificate. Manage and generate your certificates below.

4 Development SSL Certificate
Create certificate to use for this App ID. Create Certificate...
il Production 55L Certificate

Create certificate to use for this App ID. Create Certificate...

The “Add iOS Certificate” wizard comes up:

Certificates, Identifiers & Profiles I -
i0S Apps = Add i0S Certificate qQ
V. Certificates] Select Type Request Generate Approval
All
Pending

Cortifivante

About Creating a Certificate Signing Request (CSR)

Development

Distribution
0| Identifiers []
App IDs To manually generate a Certificate, you need a Certificate Signing Request (CSR) file from your
Pass Type IDs Mac. To create a CSR file, follow the instructions below to create one using Keychain Access.
L__‘ Devices
Provisioning Profiles Create a CSR file.

In the Applications folder on your Mac, open the Utilities folder and launch Keychain Access.

Within the Keychain Access drop down menu, select Keychain Access > Certificate Assistant >
Request a Certificate from a Certificate Authority

¢ In the Certificate Information window, enter the following information:

¢ In the User Email Address field, enter your email address

e In the Common Name field, create a name for your private key (eg. John Doe Dev Key)

The first thing it asks you is to generate a Certificate Signing Request. You already did
that, so click Continue. In the next step you upload the CSR. Choose the CSR file that you
generated earlier and click Generate.

It takes a few seconds to generate the SSL certificate. Click Continue when it's done.

Now click Download to get the certificate — it is named “aps development.cer’.

As you can see, you have a valid certificate and push is now available for development. You
can download the certificate again here if necessary. The development certificate is only
valid for 3 months.

When you are ready to release your app, repeat this process for the production certificate.
The steps are the same.

Note: The production certificate remains valid for a year, but you can renew it before
the year is over to ensure there is no downtime for your app.

Converting the aps_development.cer File
The aps_development.cercertificate will be used by the server to send push notifications.
However most servers (and the provided DemoServer) don’t work with . cer files directly but
support .p12 file format instead so we’ll have to convert it. If your server can work directly
with . cer files you can just skip this step.
1. Double-click on the aps development.cerfile to import it to the Keychain. You'll see
a new item like “Apple Development IOS Push Services: com.uttest.pushchat
in All items list.

2. Select the Certificates category:

® Keychain Access File Edit View Window Help

Keychain Access
f
Click to lock the login keychain.
Keychains
" login "/'I'“_m”m Apple Development 10S Push Services: com.uttest.pushchat
&' Local ltems Issued by: Apple Worldwide Developer Relations Certification Autharity

Expires: Monday 16 May 2016 16 h 36 min 40 s Central Europsan Summer Time
& This certificate Is valid

& System
System Roots

Name ~ Kind Date Modified

Expires Keychain

B Apple Development 10S Push Servic certificate - 16 May 2018 16:36:40 login

Category
& All ltems
L. Passwords

Secure Notes
El My Certificates

3. Expand the certificate item and press Export... in a context menu of its private key:

@ Keychain Access File Edit View Window Help
[BON

s
Click to lock the login keychain.

Keychain Access

Keychains |
e | - PushChat
o | Kind private key, RSA, 2048-bit
Q Local ltems I Usage Any
& System W
System Roots
Name ~ Kind Expires Keychain
¥ [5] Apple Development I0S Push Services: com.uttest.pushchat certificate 16 May 2016 16:36:40 login
[¥ _PushChat Copy “PushChat"
FE ! Delete “PushChat”
» Export ishChat’
> Get Info
3 s Create a Certificate With “PushChat”...

Request a Certificate From a Certificate Authority With “PushChat”...
Create a Certificate Authority With “PushChat”...

Category

A All ltems

4. Passwords
Secure Notes

E My Gertificates

l, Keys

. Certificates

4. Select the .p12 file name and location, click Save and choose a password. The key
file is ready to use.

Making the Provisioning Profile

You're not yet done with the iOS Dev Center. Click the Provisioning Profiles button in the
sidebar and click the + button.

Certificates, Identifiers & Profiles

I -
i0S Apps = iOS Provisioning Profiles +)= [a
7: Certificates e 11 profiles total.
ol Name Type Status
Pending

Development
Distribution
D ldentifiers S
App IDs
Pass Type IDs
] Devices
Provisioning Profiles []
All
Development

Distribution

This will open up the iOS provisioning profile wizard.

1. Select the “iOS App development” option button in the first step of the wizard and press
Continue.

xﬂ What type of provisioning profile do you need?

FROV

Development

(=) i0S App Development
Create a provisioning profile to install development apps on test devices.

Distribution
App Store
Create a distribution provisioning profile to submit your app to the App Store.

Ad Hoc

Create a distribution provisioning profile to install your app on a limited number of registered
devices.

Cancel

https://developer.apple.com/devcenter/ios

2. Select the PushChat app id that you created in the previous section. This will ensure that
this provisioning profile is explicitly tied to the PushChat app. Press Continue.

Add iOS Provisioning Profile (=] [a]

Select Type Configure

Generate / Download

&
' Select App ID.

_PROv_J

If you plan to use services such as Game Center, In-App Purchase, and Push Notifications,
or want a Bundle ID unique to a single app, use an explicit App ID. If you want to create one
provisioning profile for multiple apps or don't need a specific Bundle ID, select a wildcard
App ID. Wildcard App IDs use an asterisk (*) as the last digit in the Bundle ID field. Please
note that i0S App IDs and Mac App IDs cannot be used interchangeably.

App ID: | pushchat [N ¢

3. In next step you select the certificates you want to include in this provisioning profile. This
step should be quite routine by now.

Add iOS Provisioning Profile L2).0.)

Select Type i

Configure Generate » Download

| @ Select certificates.

PRV |

Select the certificates you wish to include in this provisioning profile. To use this profile to
install an app, the certificate the app was signed with must be included.

[QI Select All 1 of 1 item(s) selected

~ I iCs Development)

4. Select the devices you want to include in this provisioning profile. Since you're creating
the development profile you would typically select the devices you use for development here.

& Select devices.

PROV

Select the devices you wish to include in this provisioning profile. To install an app signed with
this profile on a device, the device must be included.

[] Select All 2 of 26 item(s) selected

™ Kauserali's iPhone

Kauserali's iPod

5. Set the provisioning profile name as “PushChat Development” as shown below.

iﬂ; Name this profile and generate.

PROV

The name you provide will be used to identify the profile in the portal. You cannot use special
characters such as @, &, *,', " for your profile name.

Profile Name: | pushChat Development

Type: Development
App ID: PushChat I
Certificates: 1 Included

Devices: 2 Included

You’re almost done! Finally press the Download button, this will download the newly created
Development provisioning profile.

Add the provisioning profile to Xcode by double-clicking it or dragging it onto the Xcode icon.
If you’re ready to release your app to the public, you will have to repeat this process to make
an Ad Hoc or App Store distribution profile.

Apply Credentials and Test

What is left is to configure the Demo Server. You can use any Java IDE you like. F.e. in
Eclipse you can create a new Java project in the
Assets/UTNotifications/Editor/DemoServexfolder. All the source files and libraries will
be imported into it by default.

1. Open the file
Assets/UTNotifications/Editor/DemoServer/src/DemoServer/PushNotificato
r.java

2. Find these lines in it:
private static final String APN CERT PATH = null;
private static final String APN:CERT:PASSWORD =null;

3. Replace these nul1is by the full path and password of .p12 you created in Converting
the aps_development.cerFile. The path may also be relative to the
Assets/UTNotifications/Editor/DemoServeifolder. For example:
private static final String APN CERT PATH = ;
private static final String APN CERT PASSWORD =

4. Build and run the Demo Server (Fn + F5 in Eclipse in OS X by default)

5. Now let’s save the running server address in the m_webServeraddressvariable in file
Assets/UTNotifications/Sample/UTNotificationsSample.cdike:
protected string m webServerAddress = ;

F.e. | connected an iPad to the same Wi-Fi network as the Demo Server so | used

the internal network address of the server here:
protected string m webServerAddress = ;

6. In Unity open the UTNotifications Settings in menu: Edit -> Project Settings ->
UTNotifications(Unity restart may be required to see this menu item first time) and
enable Push Notifications toggle in the iOS Settings.

7. Setup the UTNotificationsExampleScene
(Assets/UTNotifications/Sample/PushNotificationBxampleScene.unity) as
the first scene in build in Unity: File -> Build Settings -> Scenes In Build

8. Build and deploy the iOS version to a device. Please make sure, that XCode uses
the same Code Signing Identity as was selected on 3rd step of Making the
provisioning profile.

9. If you did everything right you should see this:

2nd button text: “Initialize\nRegistered! means that the server is running,

accessable and the registration id was successfully received and sent to the Demo
Server.

10. Press Notify all registered devices button to request the Demo Server to send a

push notification to every registered in it registration id. When it's delivered you'll
see a screen similar to this:

It means that registering, receiving push notifications and their handling works fine!

Configuring the Google Cloud Messaging (GCM)

Based on GCM official documentation: https://developers.google.com/cloud-messaging/.

Enable Google Cloud Messaging
1. Open this page:
https://developers.google.com/cloud-messaging/android/client#get-config
2. Press GET A CONFIGURATION FILE button.
3. Choose or create an app (use the same Android package name as specified for your
project in Unity as Bundle id). Press Choose and configure service button.

Create or choose an app

App name

PUSh NOtIﬁCHtIOﬂS - © Services will be added to your existing project in

the Google Developers Console.

Android package name

universal.tools.notificationsexample ~

CONTINUE TO

Choose and configure services =

https://developers.google.com/cloud-messaging/
https://developers.google.com/cloud-messaging/android/client#get-config

4. Choose Cloud Messaging tab if not selected. Press ENABLE GOOGLE CLOUD
MESSAGING button.

Choose and configure services

v You are configuring the Push Test app with package name universal.tools.notificationsexample. X

Select which Google services you'd like to add to your app below.

& % o

Google Sign-in Analytics Cloud Messaging

Cloud Messaging

s between

ENABLE GOOGLE CLOUD MESSAGING

Generate configuration files

5. Press Generate configuration files button.

Select which Google services you'd like to add to your app below.

e u &

Google Sign-In Analytics Cloud Messaging

Cloud Messaging

v Enabled for your app

DOCUMENTATION

Server APl Key @
A me—— e =

Sender ID @

=

CLOSE

CONTINUE TO
Generate configuration files =

6. Press Download google-services.json button to download the configuration file.

Apply Credentials and Test

What is left is to apply the configuration file you obtained previously and start the Demo
Server. You can use any Java IDE you like. F.e. in Eclipse you can create a new Java
project in the Assets/UTNotifications/Editor/DemoServerfolder. All the source files and

libraries will be imported into it by default.

1. In Unity open the UTNotifications Settings in menu: Edit -> Project Settings ->
UTNotifications(Unity restart may be required to see this menu item first time) and

enable Push Notifications toggle in the Google Cloud Messaging.

2. In Google Play Settings press Load google-services.json button to load and apply
the configuration file you obtained in 6th step of Enable Google Cloud Messaging.
You should see a numeric value of SenderID below the button.

ﬂ.lnspecmr | e
UTNotificationsSettings [%
| Open |
¥ Help
[Manual] l APl Reference]
[Forum “ Report lssue
[Feedback] l Support Email
¥ Notification Profiles (Sounds & lcons)
[default]
l + |
05
¥ Android
Show Motifications:
[WHEN_CLOSED_OR_IN_BACKGROUND &l
Restore Motifications On Reboot [7]: [+
Grouping Mode (7]: | More info... |
| BY_NOTIFICATION_PROFILES ¢

. In order to use a notification as a group summary, provide user data key
"notification_group_summary” with any value when posting the
notification.

Show Only Latest Notification [?] L]

¥ Google Cloud Messaging
Push Maotifications [7]: [

=

[©___lLoad google-services.json >
S ——————

SenderlD [?]: [=———

Amazon Device Messaging

F Windows Store
b Advanced

3. Build and run the Demo Server (Fn + F5 in Eclipse in OS X by default). The
DemoServer should have been automatically configured in a previous step.

4. Now let’s save the running server address in the m webserveraddressvariable in file
Assets/UTNotifications/Sample/UTNotificationsSample.cdike:
protected string m webServerAddress ="http://address:port';

F.e. | connected an Android device to the same Wi-Fi network as the Demo Server
so | used the internal network address of the server here:
protected string m webServerAddress ="http://192.168.2.102:8080"

5. Setup the UTNotificationsExampleScene
(Assets/UTNotifications/Sample/PushNotificationBxampleScene.unity) as
the first scene in build in Unity: File -> Build Settings -> Scenes In Build

6. Build and deploy the Android version to a device.

7. If you did everything right you should see this:

st

2nd button text: “Initialize\nRegistered! means that the server is running,
accessable and the registration id was successfully received and sent to the Demo
Server.

8. Press Notify all registered devices button to request the Demo Server to send a

push notification to every registered in it registration id. When it's delivered you'll
see a screen similar to this:

It means that registering, receiving push notifications and their handling works fine!

Configuring the Amazon Device Messaging (ADM)
Based on ADM official documentation:
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining

-adm-credentials

Getting Your OAuth Credentials and API Key
To obtain credentials and enable your app to use ADM:

1.

B

Create an account on the Amazon Apps & Games Developer Portal and add your
app, if you have not already done so.

In Apps & Services > My Apps, select the app with which you want to use ADM or
create a new one.

Click Device Messaging.

If you have already assigned a security profile to your app, proceed to step 7.

To assign a security profile to your app, choose an existing security profile from
Select a Security Profile or click Create a New Security Profile. A security profile
provides the OAuth credentials that you use when sending messages with ADM.
Note: You can share the use of a security profile among more than one app. Sharing
a profile allows apps to share some types of data. For example, you may have a "My
Cat - Free" app and a "My Cat - HD" app. If you apply a single security profile to both
apps, data accessed by that profile is available to both apps. For a shared profile,
choose a name that applies to both, for example, "My Cat Apps profile".

https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials
https://developer.amazon.com/public

DASHBOARD APPS & SERVICES REPORTING SUPPORT DOCUMENTATION SETTINGS

App Testing Service Promotions New Security Profiles Login with Amazon Cloud Drive Alexa GameCircle AJB Testing Analytics

PC & Mac Instant Access Tester Management Mobile Ads

Gurrent Version (Incomplete) | Live App Testing | Reviews | In-Appltems (0) | GameCircle | Maps © Security Profile | Login with Amazon

Name your new Security Profile

Choose a name for this security profile. You can create multiple security profiles. You will associate a security profile with one or more apps. Apps that use the same security profile can
share some types of data (for example, a "My App - Free” and a "My App - HD" could share data). For a shared security profile, choose a name that applies to all the apps that will use it
(for example, "My App profile"). Learn More

* Indicates a required field

Security Profile Name *
Security Profile Description *

Cancel

6. If you used an existing security profile, be sure to select Confirm to save your
changes.
7. Click View Security Profile.
PushChat

Current Version (Incomplete) | Live App Testing | Reviews | In-Appitems(0) | GameCircle | Maps | g | Security Profile | Login with Amazon

Device Messaging
€D Device Messaging successfully enabled for Security Profile

[v] Security Profile successfully linked to app

PushChat is iated with the PushCl| ityProfile security profile.

Device Messaging is enabled for apps belonging to the security profile PushChatSecurityProfile.

View Security Profile

Login with Amazon
GameCircle

Device Messaging

8. Store somewhere the Client ID and Client Secret values.

ﬁ PushChatSecurityProfile - Security Profile

Android/Kindle Settings S Settings

These settings apply to all the apps using this security profile. Your security profile credentials — client ID and client secret — allow your app to securely identify itself to Amazon services. Leam

More

Security Profile Name PushChatSecurityProfile

Security Profile Description Push Chat

Security Profile ID amzn1.application.5a 3

Client 1D €= _mzni.application-oaz-client.e1 s
Client Secret deo ::’SD

Edit

9. Then click Android/Kindle Settings.
10. Create an API Key. Your app requires one or more API Keys.

- (Required) For a pre-release or "debug" version of your app. In all cases, you
must create an API Key for the debug version of your app, in order to test your
app with ADM.

- (Optional) For a release or "production” version of your app. If you sign the
release version of your app using your own certificate, you must create an

additional API Key for the release version of your app. If you allow Amazon to
sign your app on your behalf, you do not need to create an additional API Key.
To create an API Key, you must provide both the package name (for example,
com.mycompany.bestapplication for the app and its signature:
- Debug application signature for the pre-release version of your app.

a. In Unity open the UTNotifications Settings in menu: Edit -> Project
Settings-> UTNotifications(Unity restart may be required to see this
menu item first time) and enable Push Notifications toggle in the Amazon
Device Messaging.

b. Copy and paste the Package Name and Android debug signature MD5
hints from UTNotifications Settings / Amazon Device Messaging
Settings to the Amazon Security Profile fields Package and Signature.
Note: If you don’t see the Android debug signature MD5 hint value please
build the Android version at least once successfully. If getting the Android
debug signature MD5 is still failed after that, please see
https://developer.amazon.com/public/apis/engage/device-messaging/tech-do
cs/02-obtaining-adm-credentials.

[Lavers - I l Layout -]

= | B nspector | .=

—

) E UTNotificationsSettings & %
[Open |

B i05 Settings
¥ Coogle Play Settings

¥ Amazon Device Messaging Settings
Push Notifications [?]:
Hint: Package MName [?]:
com.uttest.pushchat
Hint: Android debug signature MD5 [7]:
[90:63:CAT TN 34ASAE
Amazon Debug API Key [?]:
[oyJhba e ———— - - - - -

Login with Amazon
GameCircle
Device Messaging

w2 PushChatSecurityProfile - Security Profile

Gener: i0S Settings

An API Key allows Amazon fo verify your app's identity. An AP| Key is generated based on the values you provide below. If different versions of your app have different signatures or package
names, such as for one or more testing versions and a production version, each version requires its own AP| Key. Leam More

API Koy Name * Q_ﬁ_‘lﬁush[ha[DehugAP[Kay >

Identifies the app you will use with this API key.

Package * €__ com.uttest.pushchat ;

Signature *

Generate New Key

- Release application signature for the production version of your app. If you sign
the release version of your app using your own certificate, provide the MD5
signature for that certificate to create an additional APl Key (more details at
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/0
2-obtaining-adm-credentials). If you allow Amazon to sign your app on your
behalf, you do not need to obtain an API Key for the release signature.

https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials
https://developer.amazon.com/public/apis/engage/device-messaging/tech-docs/02-obtaining-adm-credentials

11. Click Generate New Key.
12. Store the retrieved APl Key somewhere.
Note: It shouldn’t contain any spaces or newline characters.

Login with Amazan
GameCircle

Device Messaging

@ PushChatSecurityProfile - Security Profile

General i0S Settings

An API Key allows Amazon to verify your app's identity. An API Key Is generated based on the values you provide below. If different versions of your app have different signatures or package
names, such as for one or more testing versions and a production version, each version requires its own API Key. Leam More

API Key Name.

Key ~

~

P "

Package com.uttest.pushchat

Signature 90:63:CA: 34:A5:AE

Edit

Add an API Key

Apply Credentials and Test

What is left is to configure the Demo Server. You can use any Java IDE you like. F.e. in
Eclipse you can create a new Java project in the
Assets/UTNotifications/Editor/DemoServedolder. All the source files and libraries will
be imported into it by default.

1. Open the file
Assets/UTNotifications/Editor/DemoServer/src/DemoServer/PushNotificato
r.java

2. Find these lines in it:
private static final String AMAZON CLIENT ID =null;
private static final String AMAZON:CLIENT:SECRET =null;

3. Replace the nu11’s by the values you got in 8th step of Getting Your OAuth
Credentials and API Key.

4. Build and run the Demo Server (Fn + F5 in Eclipse in OS X by default).

5. In Unity open the UTNotifications Settings in menu: Edit -> Project Settings ->
UTNotifications

6. In Amazon Device Messaging Settings write down the Amazon Debug API Key
value you got in 12th step of Getting Your OAuth Credentials and API Key.

Layers -] l Layout -]

.= @ Inspector | B =
E UTMotificationsSettings 4,
| open |

b= 05 Settings
= Coogle Play Settings

¥ Amazon Device Messaging Settings
Push Motifications [7]: [
Hint: Package Mame [?]:
com.uttest.pushchat
Hint: Android debug signature MD5 [?]:
90:63:CA ar "~ 34ASAE
Amazon Debug AP Key [7]:
eylhbe - ——————

7. Now let’s save the running server address in the m webserveraddressvariable in file

Assets/UTNotifications/Sample/UTNotificationsSample.cdike:
protected string m webServerAddress = H

F.e. | connected a Kindle device to the same Wi-Fi network as the Demo Server so |

used the internal network address of the server here:
protected string m _webServerAddress = H

8. Setup the UTNotificationsExampleScene
(Assets/UTNotifications/Sample/PushNotificationBxampleScene.unity) as
the first scene in build in Unity: File -> Build Settings -> Scenes In Build

9. Build and deploy the Android version to a device.

10. If you did everything right you should see this:

2nd button text: “Initialize\nRegistered! means that the server is running,

accessable and the registration id was successfully received and sent to the Demo
Server.

11. Press Notify all registered devices button to request the Demo Server to send a
push notification to every registered in it registration id. When it's delivered you'll
see a screen similar to this:

It means that registering, receiving push notifications and their handling works fine!

Configuring the Windows Push Notification Services (WNS)
Based on WNS official documentation:
https://msdn.microsoft.com/en-us/library/windows/apps/hh465407 .aspx.

Register your app with the Dashboard

Before you can send notifications through WNS, you must register your app. Do so through
the Dashboard, the developer portal that enables you to submit, certify, and manage your
Windows Store apps. When you register your app through the Dashboard, you are given
credentials—a Package security identifier (SID) and a secret key—which your cloud service
uses to authenticate itself with WNS.

To register:
1. Go to the Windows Store apps page of the Windows Dev Center and sign in with
your Microsoft account.
2. Once you have signed in, click the Dashboard link.
3. On the Dashboard, select Submit an app.

https://msdn.microsoft.com/en-us/library/windows/apps/hh465407.aspx
https://dev.windows.com/overview
https://dev.windows.com/
https://dev.windows.com/overview

https://dev.windows.com/en-us/overview ?from=UHF

=. Microsoft Developer technologies -

Windows Dev Center Explore

My apps

UTNoatifications Test
In progress

Create a new app

Payout summary
Advertising performance

Account settings

4. Choose a name and click “Reserve app name” to register an app.

Obtain the identity values for your app

When you reserved a name for your app, the Windows Store created your associated
credentials. It also assigned associated identity values—name and publisher.
1. Click at Services -> Push Notifications in the left menu.

=. Microsoft Developer technologies

Windows Dev Center Explore

UTNotifications Sample

App overview
Analytics ~
Submissions
I1APs
Monetization »

Services A

CPush notification

Maps

App management »

2. Press on alink Live Services site.

=- Microsoft Developer technologies

Windows Dev Center Explore Downloads Samples Community Programs

UTNotifications Sample Pu Sh I’]OtIfICatIOﬂS

App overview

Windows Push Notification Services (WNS) and Microsoft Azure Mobile Services

Analytics v

Submissions The Windows Push Notification Services (WNS) enables you to send toast, tile, badge, and raw updates
from your own cloud service. Learn more

|1APs

o If you have an existing WNS solution or need to update your current client secret, visit thé E'\va Services
Monetization \ ﬁ

Services ~

You can also use Microsoft Azure Mobile Services to send push notifications, authenticate and manage
Push notifications app users, and store app data in the cloud. Sign in to your Microsoft Azure account or sign up now to add

services to up to ten apps for free.
Maps

App management ~~

3. Save somewhere the following values: Package SID, Client secret, Identity Name
& Publisher.

UTNotifications Sample

Settings
. . To protect your app's security, Windows Push Notification Services (WNS) and services using Microsoft account use client secrets to
Basic Information authenticate the communications from your server.
API Settings
App Settings|

Localization

This is the unigue identifier for your Windows Store app.

To set your application's identity values manually, open

the AppManifest.xml file in a text editor and set these
Publisher="CN= D= T - S-S attributes of the <identity> element using the values
" > shown here.

This is 2 unigue identifier for your application.

Far security purposes, don't share your client secret
with anyone.

If your client secret has been compromised or your organization requires that you periodically change client secrets, create a new client
secret here. After you create a new client secret, both the old and the new client secrets will be accepted until you activate the new secret.

Create a new client secret

Note: Please wait 24 hours before you activate your new client secret, because the old client secret won't work after you activate the new
one.

4. In Unity open the UTNotifications Settings in menu: Edit -> Project Settings->
UTNotifications(Unity restart may be required to see this menu item first time) and
enable Push Notifications toggle in the Windows Store Settings.

5. Open Windows Store player settings: File -> Build Settings..-> Windows Store
-> Player Settirgs.

6. Use Identity Name value from 3rd step as Package Name.

@ (s | 0|+ | & B B0 8|9 |

Settings for Windows Store

Resolution and Presentation

Splash Image

Other Settings

Publishing Settings
Packaging

Package name

Package display name
Version |1.0.0.0
Publisher display name UniversalTools

7. Press Create button to create a certificate.
@ |+ | 0 % |

Settings for Windows Store

Resolution and Presentation

| |
| Icon |
| Splash Image |
| |

Other Settings

Publishing Settings

Packaging

Package name = —= — i =
Package display name UTNotificationsExample

Versian 1.0.0.0]

Publisher display name LUniversalToaols

Certificate

Publisher [R Sy, B — |
Issued by EBr— NS T |
Expiration date 10/31/2016

8. Use Publisher from 3rd step for Publisher. Don’t include starting CN= to this value,
only the rest. Note, that at least in Unity 5.2 the certificate creation dialog is buggy
(it's not optimized for such a long values of Publisher). Anyway, it works.

Create Test Certificate for Windows Store

Publisher

Password

Confirm password [eeeess|

Current file will be overwritten.

Apply Credentials and Test

What is left is to configure the Demo Server. You can use any Java IDE you like. F.e. in
Eclipse you can create a new Java project in the
Assets/UTNotifications/Editor/DemoServerfolder. All the source files and libraries will
be imported into it by default.

1. Open the file
Assets/UTNotifications/Editor/DemoServer/src/DemoServer/PushNotificato
r.java

2. Find these lines in it:
private static final String WINDOWS PACKAGE SID =null;
private static final String WINDows:CLIENT_gECRET =null;

3. Replace the nul1’s by the values Package SID & Client secret you got in 3rd step
of Obtain the identity values for your app section.

4. Build and run the Demo Server (Fn + F5 in Eclipse in OS X by default).

5. Now let’s save the running server address in the m websServeraddressvariable in file
Assets/UTNotifications/Sample/UTNotificationsSample.cdike:
protected string m webServerAddress = "http://address:port';

F.e. | connected a Kindle device to the same Wi-Fi network as the Demo Server so |
used the internal network address of the server here:
protected string m webServerAddress ="http://192.168.2.102:8080"%

6. Setup the UTNotificationsExampleScene
(Assets/UTNotifications/Sample/PushNotificationBxampleScene.unity) as
the first scene in build in Unity: File -> Build Settings -> Scenes In Build

7. Build and deploy the Windows Store version to a phone or a local computer.

8. If you did everything right you should see this:

2nd button text: “Tnitialize\nRegistered! means that the server is running,

accessable and the registration id was successfully received and sent to the Demo
Server.

9. Press Notify all registered devices button to request the Demo Server to send a
push notification to every registered in it registration id. When it's delivered you'll
see a screen similar to this:

It means that registering, receiving push notifications and their handling works fine!

Unicode Support
Please note that in order to support non-English Unicode characters on Android and
Windows Store (GCM, ADM & WNS), the title and text and user data strings of sent push

notifications should be URL-encoded. F.e. see
Assets/UTNotifications/Editor/DemoServer/src/DemoServer/PushNotificator.java,

public static int notifyGooglePlay Or public static int notifyAmazon:
title = java.net.URLEncoder.encode (title) ;

text = java.net.URLEncoder.encode (text) ;

No encoding is required for iOS.

Contacts

If you got any questions please feel free to contact us: universal.tools.contact@gmail.com.
You can post bugs and feature requests at
https://github.com/universal-tools/UTNotificationsFeedback/issues.

If you liked using UTNotifications, please rate it, but any criticism is also welcome - please
help us make the asset better!

Thank you for using UTNotifications!

https://en.wikipedia.org/wiki/URL-Encoding
mailto:universal.tools.contact@gmail.com
https://github.com/universal-tools/UTNotificationsFeedback/issues
https://www.assetstore.unity3d.com/#!/content/37767

Your Universal Tools team.

